Respuesta :

Answer:

[tex]120\º \text{ and } 240\º[/tex]

or in radians:

[tex]$\frac{2\pi }{3} \text{ and } \frac{4\pi }{3}$[/tex]

Step-by-step explanation:

From the way you wrote, you want to solve the equation

[tex]\sqrt {2 \cos(x)+1}=0[/tex] for [tex]0 \leq x < 360\º[/tex], or in radians [tex][0, 2\pi)[/tex]

[tex]\sqrt {2 \cos(x)+1}=0[/tex]

Square both sides

[tex]2 \cos(x) +1= 0[/tex]

[tex]2\cos(x)=-1[/tex]

[tex]$\cos(x)=-\frac{1}{2} $[/tex]

In the Unit Circle, considering one revolution (interval [tex][0, 2\pi)[/tex]),

the values where [tex]$\cos(x)=-\frac{1}{2} $[/tex]  are in Quadrant II and III.

Once

[tex]$\cos(x)= \frac{1}{2} \text{ for } x = 60\º \text{ in the Quadrant I}$[/tex]

The values where

[tex]$\cos(x)=-\frac{1}{2} $[/tex]   are 120º and 240º.

Answer:

C on edge

Step-by-step explanation: