Prove the formula for (d/dx)(cos−1(x)) by the same method as for (d/dx)(sin−1(x)). Let y = cos−1(x). Then cos(y) = and 0 ≤ y ≤ π ⇒ −sin(y) dy dx = 1 ⇒

Respuesta :

Answer:

[tex]\frac{d(cos^{-1}x )}{dx} = \frac{-1}{\sqrt{1-x^2} }[/tex]

Step-by-step explanation:

Given the differential (d/dx)(cos−1(x)), to find the equivalent formula we will differentiate the inverse function using chain rule as shown below;

let;

[tex]y = cos^{-1} x \\\\taking \ cos\ of\ both\ sides\\\\cosy = cos(cos^{-1} x)\\\\cosy = x\\\\x = cosy\\\\\frac{dx}{dy} = -siny\\[/tex]

[tex]\frac{dy}{dx} = \frac{-1}{sin y} \\\\from\ trigonometry\ identity,\ sin^{2} x+cos^{2}x = 1\\sinx = \sqrt{1-cos^{2} x}[/tex]

Therefore;

[tex]\frac{dy}{dx} = \frac{-1}{\sqrt{1-cos^{2}y } }[/tex]

Since x = cos y from the above substitute;

[tex]\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^{2}} }[/tex]

Hence, [tex]\frac{d(cos^{-1}x )}{dx} = \frac{-1}{\sqrt{1-x^2} }[/tex] gives the required proof