Respuesta :
Answer:
[tex]f^{-1}(x) = \frac{cos(2x+6)}{\pi }[/tex]
Step-by-step explanation:
[tex]y = \frac{1}{2} cos^{-1} (\pi x)-3[/tex]
Firstly, we've to interchange the variables.
[tex]x = \frac{1}{2} cos^{-1}(\pi y)-3[/tex]
Solving for y
[tex]x = \frac{cos^{-1} \pi y}{2} -3[/tex]
Adding 3 to both sides
[tex]x+3 = \frac{cos^{-1}(\pi y)}{2}[/tex]
Multiplying 2 to both sides
[tex]2(x+3) = cos^{-1} (\pi y)\\2x+6 = cos^{-1} (\pi y)[/tex]
Taking cosine on both sides
[tex]\pi y = cos (2x+6)[/tex]
Dividing both sides by y
[tex]y = \frac{cos(2x+6)}{\pi }[/tex]
Replace y by [tex]f^{-1}(x)[/tex]
=> [tex]f^{-1}(x) = \frac{cos(2x+6)}{\pi }[/tex]
Answer:
[tex]\large \boxed{f^{-1}(x)=\frac{cos(2x+6)}{\pi} }[/tex]
Step-by-step explanation:
[tex]\displaystyle y=\frac{cos^{-1} (\pi x)}{2} -3[/tex]
Swicth variables.
[tex]\displaystyle x=\frac{cos^{-1} (\pi y)}{2} -3[/tex]
Solve for y.
Add 3 to both sides.
[tex]\displaystyle x+3=\frac{cos^{-1} (\pi y)}{2}[/tex]
Multiply both sides by 2.
[tex]\displaystyle 2(x+3)=cos^{-1} (\pi y)[/tex]
[tex]\displaystyle 2x+6=cos^{-1} (\pi y)[/tex]
Take the cos of both sides.
[tex]\displaystyle cos(2x+6)=\pi y[/tex]
Divide both sides by [tex]\pi[/tex].
[tex]\displaystyle \frac{cos(2x+6)}{\pi} =y[/tex]