Respuesta :

Answer:

B. 259.8 u²

Step-by-step Explanation:

The area of a regular hexagon is given as:

[tex] Area = \frac{3\sqrt{3} }{2} a^{2} [/tex]

Where a = side length of the hexagon

Thus, the area of the regular hexagon with a given side length, a = 10, is calculated as follows:

[tex] Area = \frac{3\sqrt{3} }{2} a^{2} [/tex]

[tex] Area = \frac{3\sqrt{3} }{2}* 10^{2} [/tex]

[tex] = \frac{3\sqrt{3} }{2}* 100 [/tex]

[tex] = \frac{3*1.7321 }{2}* 100 [/tex]

[tex] = \frac{5.1963 }{2}* 100 [/tex]

[tex] = \frac{519.63 }{2} [/tex]

[tex] Area = 259.815 [/tex]

The area of the regular hexagon ≈ 259.8 u²