Calculate the area of the regular hexagon ABCDEF.
A. 150 u^2
B. 259.8 u^2
C. 300 u^2
D. 519 u^2

Answer:
B. 259.8 u²
Step-by-step Explanation:
The area of a regular hexagon is given as:
[tex] Area = \frac{3\sqrt{3} }{2} a^{2} [/tex]
Where a = side length of the hexagon
Thus, the area of the regular hexagon with a given side length, a = 10, is calculated as follows:
[tex] Area = \frac{3\sqrt{3} }{2} a^{2} [/tex]
[tex] Area = \frac{3\sqrt{3} }{2}* 10^{2} [/tex]
[tex] = \frac{3\sqrt{3} }{2}* 100 [/tex]
[tex] = \frac{3*1.7321 }{2}* 100 [/tex]
[tex] = \frac{5.1963 }{2}* 100 [/tex]
[tex] = \frac{519.63 }{2} [/tex]
[tex] Area = 259.815 [/tex]
The area of the regular hexagon ≈ 259.8 u²