Respuesta :

Answer:

B. sin(theta) cos^2(theta)

Step-by-step explanation:

sin^2(theta) / csctheta tan^2(theta)

To solve, we convert to sine and cosine and then simplify.

means by the priority of operators (* and / from left to right)

(sin^2(theta) / csctheta) * tan^2(theta)

= sin^2(theta) / (1/sin(theta) * (sin(theta)/cos(theta)^2

= sin^2(theta) * sin(theta) * sin^2(theta) / cos^2(theta)

= sin^5(theta) / cos^2(theta)

which obviously does not correspond to any of the answers.

IF the expression were missing parentheses in the denominator, then it becomes:

sin^2(theta) / (csctheta tan^2(theta))

= sin^2(theta) / (1/sin(theta) * sin^2(theta) /cos^2(theta))

= sin^2(theta) / (sin(theta)/cos^2(theta)

= sin(theta) cos^2(theta)

which corresponds to answer B.

Answer:

[tex]\Large \boxed{\bold{B.} \ \mathrm{sin(\theta) \cdot cos^2(\theta) }}[/tex]

Step-by-step explanation:

[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{ csc(\theta) \cdot tan^2(\theta)} }[/tex]

Simplify the expression.

[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{\frac{1}{sin} (\theta) \cdot \frac{ sin^2(\theta)}{ cos^2(\theta)} } }[/tex]

[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{\frac{sin^2 }{sin} (\theta) \cdot cos^2(\theta) } }[/tex]

[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{sin (\theta) \cdot cos^2(\theta) } }[/tex]

[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{sin (\theta) } \cdot cos^2(\theta) }[/tex]

[tex]\displaystyle \mathrm{sin(\theta) \cdot cos^2(\theta) }[/tex]