Respuesta :
Answer:
B. sin(theta) cos^2(theta)
Step-by-step explanation:
sin^2(theta) / csctheta tan^2(theta)
To solve, we convert to sine and cosine and then simplify.
means by the priority of operators (* and / from left to right)
(sin^2(theta) / csctheta) * tan^2(theta)
= sin^2(theta) / (1/sin(theta) * (sin(theta)/cos(theta)^2
= sin^2(theta) * sin(theta) * sin^2(theta) / cos^2(theta)
= sin^5(theta) / cos^2(theta)
which obviously does not correspond to any of the answers.
IF the expression were missing parentheses in the denominator, then it becomes:
sin^2(theta) / (csctheta tan^2(theta))
= sin^2(theta) / (1/sin(theta) * sin^2(theta) /cos^2(theta))
= sin^2(theta) / (sin(theta)/cos^2(theta)
= sin(theta) cos^2(theta)
which corresponds to answer B.
Answer:
[tex]\Large \boxed{\bold{B.} \ \mathrm{sin(\theta) \cdot cos^2(\theta) }}[/tex]
Step-by-step explanation:
[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{ csc(\theta) \cdot tan^2(\theta)} }[/tex]
Simplify the expression.
[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{\frac{1}{sin} (\theta) \cdot \frac{ sin^2(\theta)}{ cos^2(\theta)} } }[/tex]
[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{\frac{sin^2 }{sin} (\theta) \cdot cos^2(\theta) } }[/tex]
[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{sin (\theta) \cdot cos^2(\theta) } }[/tex]
[tex]\displaystyle \mathrm{\frac{sin^2(\theta ) }{sin (\theta) } \cdot cos^2(\theta) }[/tex]
[tex]\displaystyle \mathrm{sin(\theta) \cdot cos^2(\theta) }[/tex]