Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar. The endpoints of AB are A(1,4) and B(6,-1). If point C divides AB in the ratio 2 : 3, the coordinates of point C are (_,_). If point D divides AC in the ratio 3 : 2, the coordinates of point D are (_,_). help plz!

Respuesta :

Answer:

- The coordinates of C is (3,2)

-  The coordinates of D is (11/5,14/5)

Step-by-step explanation:

Given

A(1,4) and B(6,-1)

Required

a. Point C divide AB in ratio 2:3

b. Point D divide AC in ratio 3:2

When endpoints are divided into ratios, the formula to calculate the coordinates is;

[tex](x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

Solving for (a): Point C divide AB in ratio 2:3

The ratio;

[tex]m : n = 2 : 3[/tex]

For Point A;

[tex]A(x_1,y_1) = (1,4)[/tex]

For Point B;

[tex]B(x_2,y_2) = (6,-1)[/tex]

Substitute m,n,x1,x2,y1,y2 in the ratio formula given above;

[tex]C(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

[tex]C(x,y) = (\frac{2 * 6 + 3 * 1}{3+2},\frac{2 *-1 + 3 * 4}{3+2})[/tex]

[tex]C(x,y) = (\frac{12 + 3 }{5},\frac{-2 + 12}5})[/tex]

[tex]C(x,y) = (\frac{15 }{5},\frac{10}5})[/tex]

[tex]C(x,y) = (3,2)[/tex]

The coordinates of C is (3,2)

Solving for (b): Point D divide AC in ratio 3:2

Using the same steps as (a) above;

The ratio;

[tex]m : n = 3:2[/tex]

For Point A;

[tex]A(x_1,y_1) = (1,4)[/tex]

For Point C;

[tex]C(x_2,y_2) = (3,2)[/tex]

Substitute m,n,x1,x2,y1,y2 in the folowing ratio formula;

[tex]D(x,y) = (\frac{mx_2 + nx_1}{m+n},\frac{my_2 + ny_1}{m+n})[/tex]

[tex]C(x,y) = (\frac{3 * 3 + 2 * 1}{2+3},\frac{3 *2 + 2 * 4}{2+3})[/tex]

[tex]D(x,y) = (\frac{9 + 2}{5},\frac{6 + 8}{5})[/tex]

[tex]D(x,y) = (\frac{11}{5},\frac{14}{5})[/tex]

The coordinates of D is (11/5,14/5)

Answer:

3,2 and 2.2,2.8

Step-by-step explanation:

got a 100 on plato