Respuesta :
Step-by-step explanation:
[tex]W^m=\underbrace{W\cdot W\cdot W\cdot...\cdot W}_{m}\\\\W^n=\underbrace{W\cdot W\cdot W\cdot...\cdot W}_{n}\\\\W^mW^n=\underbrace{(W\cdot W\cdot W\cdot...\cdot W)}_{m}\underbrace{(W\cdot W\cdot W\cdot...\cdot W)}_{n}\\\\=\underbrace{W\cdot W\cdot W\cdot...\cdot W}_{m+n}=W^{m+n}[/tex]
From the following given equation, the answer to W^mW^n = [tex]\mathbf{W^{m+n}}[/tex]
The laws of indices provide us with the rules and principles for simplifying mathematical computations or algebraic expressions that include powers of the same base.
The example of the question given can be solved by using the multiplication rule. The multiplication rule states that we sum up the power of the integers if they have the same base.
From the given information
W^mW^n = [tex]\mathbf{W^{m+n}}[/tex]
Learn more about indices here:
https://brainly.com/question/15339224?referrer=searchResults