An epidemiologist wishes to know what proportion of adults living in a large metropolitan area have subtype ayr hepatitis B virus. Determine the sample size that would be required to estimate the true proportion to within 3% margin of error with 95 percent confidence.

Respuesta :

Answer:

Sample size 'n' = 1067

Step-by-step explanation:

Explanation:-

Given margin of error of the true proportion

M.E  = 0.03

The margin of error is determined by

                   [tex]M.E =Z_{\alpha } \frac{\sqrt{p(1-p)} }{\sqrt{n} }[/tex]

Level of significance = 0.95

The critical value Z₀.₀₅ = 1.96

 The margin of error is

                   [tex]0.03 =1.96 \frac{\sqrt{p(1-p)} }{\sqrt{n} }[/tex]

we know that

             [tex]\sqrt{p(1-p} \leq \frac{1}{2}[/tex]

                [tex]0.03 =\frac{1.96 X\frac{1}{2} }{\sqrt{n} }[/tex]

    on cross multiplication , we get

                √n  = 32.66

Squaring on both sides, we get

               n = 1066.6≅1067