What is the volume in cubic inches of the solid figure, rounded to the nearest cubic inch? Do not use units or commas in your answer.

Answer:
1131 cubic inches.
Step-by-step explanation:
The front side of the figure contains a rectangle and a semicircle.
Area of rectangle is
[tex]A_1=length\times breadth[/tex]
[tex]A_1=11\times 12[/tex]
[tex]A_1=132\text{ in}^2[/tex]
Radius of semicircle is
[tex]r=17-11=6\text{ in}[/tex]
Area of semicircle is
[tex]A_2=\dfrac{1}{2}\pi r^2[/tex]
[tex]A_2=\dfrac{1}{2}\pi (6)^2[/tex]
[tex]A_2\approx 56.55[/tex]
Area of front side is
[tex]A=A_1+A_2=132+56.55=188.55\text{ in}^2[/tex]
Let front side is the base of prism and height is 6 in. So, volume of given figure is
[tex]V=\text{Base area}\times height[/tex]
[tex]V=188.55\times 6[/tex]
[tex]V=1131.3[/tex]
[tex]V\approx 1131\text{ in}^3[/tex]
Therefore, the required volume is 1131 cubic inches.