What is the volume in cubic inches of the solid figure, rounded to the nearest cubic inch? Do not use units or commas in your answer.

What is the volume in cubic inches of the solid figure rounded to the nearest cubic inch Do not use units or commas in your answer class=

Respuesta :

Answer:

1131 cubic inches.

Step-by-step explanation:

The front side of the figure contains a rectangle and a semicircle.

Area of rectangle is

[tex]A_1=length\times breadth[/tex]

[tex]A_1=11\times 12[/tex]

[tex]A_1=132\text{ in}^2[/tex]

Radius of semicircle is

[tex]r=17-11=6\text{ in}[/tex]

Area of semicircle is

[tex]A_2=\dfrac{1}{2}\pi r^2[/tex]

[tex]A_2=\dfrac{1}{2}\pi (6)^2[/tex]

[tex]A_2\approx 56.55[/tex]

Area of front side is

[tex]A=A_1+A_2=132+56.55=188.55\text{ in}^2[/tex]

Let front side is the base of prism and height is 6 in. So, volume of given figure is

[tex]V=\text{Base area}\times height[/tex]

[tex]V=188.55\times 6[/tex]

[tex]V=1131.3[/tex]

[tex]V\approx 1131\text{ in}^3[/tex]

Therefore, the required volume is 1131 cubic inches.