The numbers of regular season wins for 10 football teams in a given season are given below. Determine the​ range, mean,​ variance, and standard deviation of the population data set.

2​, 10​, 15​, 4​, 11​, 10​, 15​, 10​, 2​, 10

Respuesta :

Answer:

a

   [tex]R =13[/tex]

b

  [tex]\= x =8.9[/tex]

c

 [tex]var(x) = 16.57[/tex]

d

 [tex]\sigma = 4.1[/tex]

Step-by-step explanation:

From the question we are given a data set  

      2​, 10​, 15​, 4​, 11​, 10​, 15​, 10​, 2​, 10

     The sample size is  n  = 10

 The range is  

         [tex]R = maxNum - MinNum[/tex]

Where maxNum  is the maximum number on the data set  which is 15

 and  MinNum  is the minimum  number on the data set  which is  2

   So

           [tex]R = 15 - 2[/tex]

           [tex]R =13[/tex]

The mean is mathematically represented as

          [tex]\= x = \frac{\sum x_i}{N}[/tex]

substituting values

          [tex]\= x = \frac{2 + 10 + 15 + 4 + 11 + 10 + 15 + 10 + 2 + 10 }{10}[/tex]

         [tex]\= x =8.9[/tex]

The variance is mathematically evaluated as

        [tex]var(x) = \frac{\sum (x - \= x)^2}{N}[/tex]

substituting values

      [tex]var(x) = \frac{(2 - 8.9 )^2 + (10 - 8.9 )^2 + (15 - 8.9 )^2 +(4 - 8.9 )^2 +(11 - 8.9 )^2 +(10 - 8.9 )^2 +(15 - 8.9 )^2 +(10 - 8.9 )^2 +} {10}[/tex]                    [tex]\frac{(2 - 8.9 )^2 +(10 - 8.9 )^2 }{10}[/tex]

[tex]var(x) = 16.57[/tex]

The standard deviation is  [tex]\sigma = \sqrt{var(x)}[/tex]

substituting values

         [tex]\sigma = \sqrt{16.57}[/tex]

        [tex]\sigma = 4.1[/tex]