Respuesta :
Answer:
[tex]\Delta G^0 _{rxn} = 207.6\ kJ/mol[/tex]
ΔG ≅ 199.91 kJ
Explanation:
Consider the reaction:
[tex]2N_{2(g)} + O_{2(g)} \to 2N_2O_{(g)}[/tex]
temperature = 298.15K
pressure = 22.20 mmHg
From, The standard Thermodynamic Tables; the following data were obtained
[tex]\Delta G_f^0 \ \ \ N_2O_{(g)} = 103 .8 \ kJ/mol[/tex]
[tex]\Delta G_f^0 \ \ \ N_2{(g)} =0 \ kJ/mol[/tex]
[tex]\Delta G_f^0 \ \ \ O_2{(g)} =0 \ kJ/mol[/tex]
[tex]\Delta G^0 _{rxn} = 2 \times \Delta G_f^0 \ N_2O_{(g)} - ( 2 \times \Delta G_f^0 \ N_2{(g)} + \Delta G_f^0 \ O_{2(g)})[/tex]
[tex]\Delta G^0 _{rxn} = 2 \times 103.8 \ kJ/mol - ( 2 \times 0 + 0)[/tex]
[tex]\Delta G^0 _{rxn} = 207.6\ kJ/mol[/tex]
The equilibrium constant determined from the partial pressure denoted as [tex]K_p[/tex] can be expressed as :
[tex]K_p = \dfrac{(22.20)^2}{(22.20)^2 \times (22.20)}[/tex]
[tex]K_p = \dfrac{1}{ (22.20)}[/tex]
[tex]K_p[/tex] = 0.045
[tex]\Delta G = \Delta G^0 _{rxn} + RT \ lnK[/tex]
where;
R = gas constant = 8.314 × 10⁻³ kJ
[tex]\Delta G =207.6 + 8.314 \times 10 ^{-3} \times 298.15 \ ln(0.045)[/tex]
[tex]\Delta G =207.6 + 2.4788191 \times \ ln(0.045)[/tex]
[tex]\Delta G =207.6+ (-7.687048037)[/tex]
[tex]\Delta G =[/tex] 199.912952 kJ
ΔG ≅ 199.91 kJ