contestada

Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.300 m and carries a current of 26.0 A in the +x direction. The second wire lies along the x-axis. The wires exert attractive forces on each other, and the force per unit length on each wire is 295 µN/m. What is the y-value (in m) of the line in the xy-plane where the total magnetic field is zero?

Respuesta :

Answer:

The y-value  is  z = 0.759 m

Explanation:

From the question we are told that

     The position of the first y-axis is  [tex]y_1 = 0.300 \ m[/tex]

     The current on the first wire is  [tex]I_ 1 = 26.0 \ A[/tex]

      The force per unit length on each wire is  [tex]\frac{F}{l} = 295 \mu N/m = 295 * 10^{-6} \ N/m[/tex]

Generally the force per unit length on first wire is mathematically represented as

                [tex]\frac{F}{l} = \frac{\mu_o * I_1 * I_2 }{2*\pi* y_1}[/tex]

Where  [tex]\mu _o[/tex] is the permeability of free space with value  [tex]\mu_o = 4\pi * 10^{-7} N/A^2[/tex]

    substituting values

                    [tex]295 *10^{-6} = \frac{ 4\pi * 10^{-7} * 26.0 * I_2 }{2 *3.142* 0.300}[/tex]

                [tex]I_2 = \frac{295 *10^{-6 } * 0.300 * 2* 3.142 }{ 4\pi * 10^{-7} * 26 }[/tex]

                 [tex]I_2 = 17.0 \ A[/tex]

Now the at the point where the magnetic field is zero the magnetic field of each wire are equal , let that point by z meters from the second wire on the y-axis  so

             [tex]\frac{\mu_o I_2}{2 * \pi * y_1} = \frac{\mu_o I_1}{2 * \pi * (y_1-z)}[/tex]

          [tex]I_2 (y_1 - z) = I_1 * y_1[/tex]

substituting values

         [tex]17.0 ( 0.300 - z) = 26 * 0.300[/tex]

         z = 0.759 m