Respuesta :

Answer:

[tex]\dfrac{1}{x^{48}y^{36}z^{6}}[/tex]

Step-by-step explanation:

[tex] (\dfrac{(x^2y^3)^{-2}}{(x^6y^3z)^{2}})^3 = [/tex]

[tex] = (\dfrac{1}{(x^6y^3z)^{2}(x^2y^3)^{2}})^3 [/tex]

[tex] = (\dfrac{1}{x^{12}y^6z^{2}x^4y^6})^3 [/tex]

[tex]= (\dfrac{1}{x^{16}y^{12}z^{2}})^3[/tex]

[tex]= \dfrac{1}{x^{48}y^{36}z^{6}}[/tex]

Answer:

[tex]\displaystyle \frac{1}{x^{48}y^{36}z^6}[/tex]

Step-by-step explanation:

[tex]\displaystyle[\frac{(x^2 y^3)^{-2}}{(x^6 y^3 z)^2 } ]^3[/tex]

[tex]\displaystyle \frac{(x^2 y^3)^{-6}}{(x^6 y^3 z)^6 }[/tex]

[tex]\displaystyle \frac{(x^{-12} y^{-18})}{(x^{36} y^{18}z^6 ) }[/tex]

[tex]\displaystyle \frac{x^{-48} y^{-36}}{z^6 }[/tex]

[tex]\displaystyle \frac{1}{x^{48}y^{36}z^6}[/tex]