Respuesta :

Answer:

A

Step-by-step explanation:

Using the rule of radicals

[tex]\sqrt{a}[/tex] × [tex]\sqrt{b}[/tex] ⇔ [tex]\sqrt{ab}[/tex]

Simplifying

[tex]\sqrt{27}[/tex] = [tex]\sqrt{9(3)}[/tex] = [tex]\sqrt{9}[/tex] × [tex]\sqrt{3}[/tex] = 3[tex]\sqrt{3}[/tex]

[tex]\sqrt{12}[/tex] = [tex]\sqrt{4(3)}[/tex] = [tex]\sqrt{4}[/tex] × [tex]\sqrt{3}[/tex] = 2[tex]\sqrt{3}[/tex]

Thus

[tex]\sqrt{6}[/tex] + 2[tex]\sqrt{3}[/tex] + [tex]\sqrt{27}[/tex] - [tex]\sqrt{12}[/tex]

= [tex]\sqrt{6}[/tex] + 2[tex]\sqrt{3}[/tex] + 3[tex]\sqrt{3}[/tex] - 2[tex]\sqrt{3}[/tex] ← collect like terms

= 3[tex]\sqrt{3}[/tex] + [tex]\sqrt{6}[/tex] → A

Answer:

a

Step-by-step explanation:

a pe xxxxxxxx