What is the difference? StartFraction 2 x + 5 Over x squared minus 3 x EndFraction minus StartFraction 3 x + 5 Over x cubed minus 9 x EndFraction minus StartFraction x + 1 Over x squared minus 9 EndFraction StartFraction (x + 5) (x + 2) Over x cubed minus 9 x EndFraction StartFraction (x + 5) (x + 4) Over x cubed minus 9 x EndFraction StartFraction negative 2 x + 11 Over x cubed minus 12 x minus 9 EndFraction StartFraction 3 (x + 2) Over x squared minus 3 x EndFraction

What is the difference StartFraction 2 x 5 Over x squared minus 3 x EndFraction minus StartFraction 3 x 5 Over x cubed minus 9 x EndFraction minus StartFraction class=

Respuesta :

Answer:

[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]

First option is the correct option.

Step-by-step explanation:

[tex] \frac{2x + 5}{ {x}^{2} - 3x } - \frac{3x + 5}{ {x}^{3} - 9x } - \frac{x + 1}{ {x}^{2} - 9 } [/tex]

Factor out X from the expression

[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x( {x}^{2} - 9)} - \frac{x + 1}{ {x}^{2} - 9} [/tex]

Using [tex] {a}^{2} - {b}^{2} = (a - b)(a + b)[/tex] , factor the expression

[tex] \frac{2x + 5}{x(x - 3)} - \frac{3x + 5}{x(x - 3)(x + 3) } - \frac{x + 1}{(x - 3)(x + 3)} [/tex]

Write all numerators above the Least Common Denominators x ( x - 3 ) ( x + 3 )

[tex] \frac{(x + 3) \times (2x - 5) - (3x + 5) - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]

Multiply the parentheses

[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - (3x + 5) - x(x + 1)}{x(x - 3)(x + 3)} [/tex]

When there is a (-) in front of an expression in parentheses, change the sign of each term in the expression

[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - x \times (x + 1)}{x(x - 3)(x + 3)} [/tex]

Distribute -x through the parentheses

[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x }{x(x - 3)(x + 3)} [/tex]

Using [tex] {a}^{2} - {b}^{2} = (a + b)(a - b)[/tex] , simplify the product

[tex] \frac{2 {x}^{2} + 5x + 6x + 15 - 3x - 5 - {x}^{2} - x}{x( {x}^{2} - 9)} [/tex]

Collect like terms

[tex] \frac{ {x}^{2} + 7x + 15 - 5}{x( {x}^{2} - 9)} [/tex]

Subtract the numbers

[tex] \frac{ {x}^{2} + 7x + 10}{ x({x}^{2} - 9)} [/tex]

Distribute x through the parentheses

[tex] \frac{ {x}^{2} + 7x + 10}{ {x}^{3} - 9x} [/tex]

Write 7x as a sum

[tex] \frac{ {x}^{2} + 5x +2x + 10 }{ {x}^{3} - 9x } [/tex]

Factor out X from the expression

[tex] \frac{x(x + 5) + 2x + 10}{ {x}^{3} - 9x} [/tex]

Factor out 2 from the expression

[tex] \frac{x( x + 5) + 2(x + 5)}{ {x}^{3} - 9x } [/tex]

Factor out x + 5 from the expression

[tex] \frac{(x + 5)(x + 2)}{ {x}^{3} - 9x } [/tex]

Hope this helps...

Best regards!!

The difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]

The expression is given as:

[tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex]

Factorize the denominators

[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x^2 - 9)} - \frac{x + 1}{x^2 - 9}[/tex]

Apply the difference of two squares to the denominators

[tex]\frac{2x + 5}{x(x -3)} - \frac{3x + 5}{x(x - 3)(x + 3)} - \frac{x + 1}{(x - 3)(x + 3)}[/tex]

Take LCM

[tex]\frac{(2x + 5)(x + 3) - 3x - 5 -x(x + 1) }{x(x - 3)(x + 3)}[/tex]

Expand the numerator

[tex]\frac{2x^2 +6x + 5x + 15 - 3x - 5 -x^2 - x }{x(x - 3)(x + 3)}[/tex]

Collect like terms

[tex]\frac{2x^2 -x^2 - x +6x + 5x - 3x+ 15 - 5 }{x(x - 3)(x + 3)}[/tex]

Simplify

[tex]\frac{x^2+7x+ 10 }{x(x - 3)(x + 3)}[/tex]

Factorize the numerator

[tex]\frac{(x+5)(x+ 2) }{x(x - 3)(x + 3)}[/tex]

Expand the denominator

[tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]

Hence, the difference of the expression [tex]\frac{2x + 5}{x^2 -3x} - \frac{3x + 5}{x^3 - 9x} - \frac{x + 1}{x^2 - 9}[/tex] is [tex]\frac{(x+5)(x+ 2) }{x^3- 9x}[/tex]

Read more about equivalent expressions at:

https://brainly.com/question/2972832