Answer:
Binomial probability online calculator gives P([tex]\hat p[/tex]>0.60) =0.1054
Step-by-step explanation:
Given that n = 111
p = 0.54
To find P([tex]\hat p[/tex]>0.60)
We have;
P([tex]\hat p[/tex]>0.60) = [tex]P \left (\dfrac{0.6 - p}{\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}} > Z \right )[/tex]
P([tex]\hat p[/tex]>0.60) = [tex]P \left (\dfrac{0.6 - 0.54}{\sqrt{\dfrac{0.54(1-0.54)}{111}}} > Z \right )[/tex]
P([tex]\hat p[/tex]>0.60) = P(1.268 > Z) = 1 - 0.8962 = 0.1038
The above result was obtained from calculation
Binomial probability online calculator gives P([tex]\hat p[/tex]>0.60) =0.1054.