Below, is the sample size, is the population proportion and is the sample proportion. Use the Central Limit Theorem and the TI-84 calculator to find the probability. Round the answer to at least four decimal places.
n=111
p=0.54
P (P > 0.60) =

Respuesta :

Answer:

Binomial probability online calculator gives P([tex]\hat p[/tex]>0.60) =0.1054

Step-by-step explanation:

Given that n = 111

p = 0.54

To find P([tex]\hat p[/tex]>0.60)

We have;

P([tex]\hat p[/tex]>0.60) = [tex]P \left (\dfrac{0.6 - p}{\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}} > Z \right )[/tex]

P([tex]\hat p[/tex]>0.60) = [tex]P \left (\dfrac{0.6 - 0.54}{\sqrt{\dfrac{0.54(1-0.54)}{111}}} > Z \right )[/tex]

P([tex]\hat p[/tex]>0.60) = P(1.268 > Z) = 1 - 0.8962 = 0.1038

The above result was obtained from calculation

Binomial probability online calculator gives P([tex]\hat p[/tex]>0.60) =0.1054.