Respuesta :
Answer:
s(t) = 11t²/2
Step-by-step explanation:
Velocity is defined as the rate of change in displacement of a body. It is expressed mathematically as v = change in displacement/time
v(t) = ds(t)/dt
ds(t) = v(t)dt
integrating both sides;
s(t) = [tex]\int\limits v(t)dt[/tex]
Given the velocity function f(t) = 11t, the car's position (displacement) is expressed as s(t) = [tex]\int\limits 11t\ dt[/tex]
s(t) = 11t²/2 + C
at the initial point, s(0) = 0 i.e when t = 0, s(t) = 0. The resulting equation becomes;
0 = 11(0)²/2+ C
0 = 0+C
C = 0
To find the car's position, s(t), we will substitute C = 0 into the equayion above;
s(t) = 11t²/2 + 0
s(t) = 11t²/2
Hence s(t) = 11t²/2 is the required position of the car in terms of t.
Using an integral, it is found that the car's position, at any time t, is given by:
[tex]s(t) = \frac{11t^2}{2}[/tex]
The velocity of the car is modeled by the following function:
[tex]f(t) = 11t, 0 \leq t \leq 30[/tex]
The position is the integrative of the velocity, hence:
[tex]s(t) = \int f(t) dt[/tex]
[tex]s(t) = \int 11t dt[/tex]
[tex]s(t) = \frac{11t^2}{2} + K[/tex]
In which the constant of integration K is the initial position. Since the initial position is [tex]s(0) = 0[/tex], the constant is [tex]K = 0[/tex], and hence, the car's position, at any time t, is given by:
[tex]s(t) = \frac{11t^2}{2}[/tex]
A similar problem is given at https://brainly.com/question/14096165