Respuesta :
Answer:
11.2≤[tex]\mu[/tex]12.8
Step-by-step explanation:
Confidence interval for the population mean is expressed by the formula;
CI = xbar ± Z(S/√n) where;
xbar is the sample mean = 12.5
Z is the z score at 99% confidence = 2.576
S is the standard deviation = √variance
S = √2.4 = 1.5492
n is the sample size = 25
Substituting the given values into the formula given above,
CI = 12.5 ± 2.576(1.5492/√25)
CI = 12.5 ± 2.576(0.30984)
CI = 12.5 ± 0.7981
CI = (12.5-0.7981, 12.5+0.7981)
CI = (11.2019, 12.7981)
Hence the 99% confidence interval for the population mean is 11.2≤[tex]\mu[/tex]12.8 (to 1 decimal place)
A 99% confidence interval for the population mean will be "11.2 [tex]\leq[/tex] 12.8".
Statistics
According to the question,
Sample mean, [tex]\bar x[/tex] = 12.5
Z score at 99%, Z = 2.576
Standard deviation, S = √Variance
= √2.4
= 1.5492
Sample size, n = 25
We know the formula,
Confidence interval, CI = [tex]\bar x \ \pm[/tex] Z ([tex]\frac{S}{\sqrt{n} }[/tex])
By substituting the given values, we get
= 12.5 [tex]\pm[/tex] 2.576 ([tex]\frac{1.5492}{\sqrt{25} }[/tex])
= 12.5 [tex]\pm[/tex] 2.576 (0.30984)
= 12.5 [tex]\pm[/tex] 0.7981
Now,
Cl = (12.5 - 0.7981, 12.5 + 0.7981)
= (11.2019, 12.7981) or,
= (11.2, 12.8)
Thus the above answer is appropriate.
Find out more information about mean here:
https://brainly.com/question/7597734