Respuesta :
Answer:
The correct options are (A), (C) and (D).
Step-by-step explanation:
The (1 - α)% confidence interval for population parameter implies that there is a (1 - α) probability that the true value of the parameter is included in the interval.
Or, the (1 - α)% confidence interval for the parameter implies that there is (1 - α)% confidence or certainty that the true parameter value is contained in the interval.
It is provided that the 99% confidence interval for the mean widget width is:
CI = 14.3 < μ < 30.4
The 99% confidence interval for population mean widget width (14.3, 30.4), implies that there is a 0.99 probability that the true value of the mean widget width is included in the above interval.
Or, the 99% confidence interval for the mean widget width implies that there is 99% confidence or certainty that the true mean widget width value is contained in the interval (14.3, 30.4).
Thus, the correct options are (A), (C) and (D).
Using confidence interval concepts, it is found that the correct options are:
A. With 99% confidence, the mean width of all widgets is between 14.3 and 30.4.
C. There is a 99% chance that the mean of the population is between 14.3 and 30.4.
The interpretation of a x% confidence interval is that we are x% sure that the population mean is in the interval.
In this problem, 99% confidence interval for widget width is between 14.3 and 30.4, hence we are 99% sure that the population mean, that is, the mean width of all widgets is between 14.3 and 30.4, hence options A and C are correct.
A similar problem is given at https://brainly.com/question/15043877