Respuesta :

Answer:

351.88 m

Step-by-step explanation:

Given,

D = diameter of semicircular part = 42 m

L = Length of straight part = 110 m

Now, let's find the perimeter:

= 2 ( length of semi-circle + length of straight part )

[tex] = 2( \frac{\pi \: d}{2} + l)[/tex]

Plug the values

[tex] = 2( \frac{3.14 \times 42}{2} + 110)[/tex]

Calculate the product

[tex] = 2( \frac{131.88}{2} + 110)[/tex]

Divide

[tex] = 2 (65.94 + 110)[/tex]

Calculate the sum

[tex] = 2 \times 175.94[/tex]

Calculate

[tex] = 351.88 \: m[/tex]

Hope this helps..

Best regards!!

Answer:

351.88 m²

Step-by-step explanation:

diameter of the semicircle=42  the radius=42/2=21

perimeter of circle=2π r=2(3.14(21))= 131.88(since you have two semi-circle,then it is a full circle)

perimeter of the rectangle: 2(110)=220( the width used to measure the perimeter of the circle)

the area of the track=131.88+220=351.88