What is the inverse of the function f(x) = 2x + 1?
1
1
h(x) =
X-
2
2
1
1
Oh(x) =
- x +
O h(x) =
3x-2
Oh(x) =
= {x+2
Mark this and return
Save and Exit
Next
Submit

Respuesta :

Answer:

[tex]f^{-1} = \frac{x-1}{2}[/tex]

Step-by-step explanation:

[tex]f(x) = 2x+1[/tex]

Replace it with y

[tex]y = 2x+1[/tex]

Exchange the values of  x and y

[tex]x = 2y+1[/tex]

Solve for y

[tex]x = 2y+1[/tex]

Subtracting 1 from both sides

[tex]2y = x-1[/tex]

Dividing both sides by 2

[tex]y = \frac{x-1}{2}[/tex]

Replace it by [tex]f^{-1}[/tex]

So,

[tex]f^{-1} = \frac{x-1}{2}[/tex]

Answer:

[tex]\displaystyle f^{-1}(x)= \frac{1}{2}x - \frac{1}{2}[/tex]

Step-by-step explanation:

f(x) = 2x + 1

f(x) = y (output)

y = 2x + 1

Solve for x.

y - 1 = 2x

Divide 2 on both sides.

y/2 - 1/2 = x

1/2y - 1/2 = x

Switch variables.

1/2x - 1/2 = y

[tex]f^{-1}(x)= \frac{1}{2}x - \frac{1}{2}[/tex]