Let a and b be real numbers where a=/b=/c=/0 which of the following functions could represent the graph below?

Answer: The second option; y = (x - a)^2*(x-b)^4
Step-by-step explanation:
Ok, we have that a and b are real numbers different than zero.
In the graph, we can see that the line touches the x-axis in two values. Now, if we would have an equation like:
y = x*(x - a)^3*(x - b)^3
then when x = 0 we would have:
y = 0*(0-a)^3*(0-b)^3 = 0
But in the graph, we can see that when x = 0, the value of y is different than zero, so we can discard options 1 and 3.
So the remaining options are:
y = (x - a)^2*(x-b)^4
y = (x - a)^5*(x - b)
Now, another thing you can see in the graph is that it is always positive.
Particularly the second option allows negative values for y because it has odd powers, then we can also discard this option.
(For example, if x > a and x < b we would have a negative value for y)
Then the only remaining option is y = (x - a)^2*(x-b)^4
Answer:
B.y = (x - a)^2*(x-b)^4
Step-by-step explanation:
EDGE 2020 Brainliest please