Answer:
[tex]Sin \theta = \frac{Perpendicular}{Hypotenuse}=\frac{3}{\sqrt{13}}[/tex]
[tex]Cos \theta = \frac{Base}{Hypotenuse}=\frac{2}{\sqrt{13}}[/tex]
[tex]Tan \theta = \frac{Perpendicular}{Base}=\frac{3}{2}[/tex]
Step-by-step explanation:
We are given that The point (2, 3) is on the terminal side of angle Θ, in standard position
First Draw a vertical line from the point(2,3) to the x axis.
So, Length of vertical line is 3
The intersection of the line with the x axis is at x=2.
So, now we have obtained a triangle with the horizontal side of length 2, the vertical side of length 3
To Find hypotenuse we will use Pythagoras theorem
[tex]Hypotenuse^2=Perpendicular^2+Base^2\\Hypotenuse^2=3^2+2^2\\Hypotenuse=\sqrt{9+4}\\Hypotenuse=\sqrt{13}[/tex]
[tex]Sin \theta = \frac{Perpendicular}{Hypotenuse}=\frac{3}{\sqrt{13}}[/tex]
[tex]Cos \theta = \frac{Base}{Hypotenuse}=\frac{2}{\sqrt{13}}[/tex]
[tex]Tan \theta = \frac{Perpendicular}{Base}=\frac{3}{2}[/tex]