Respuesta :

Answer:

D

Step-by-step explanation:

The correct option is option D as 2cos²(x)cos²(x) simplifies as follows:

2cos²(x)cos²(x) = {3 + 4cos(2x) + cos(4x)} / 4

Simplification:

The given expression is : 2cos²(x)cos²(x)

The square identity for cosine is given by:

2cos²(x) -1 = cos(2x)

Thus,

2cos²(x) = {cos(2x) +1}

simplifying again,

cos²(x) = {cos(2x) +1}/2

Simplifying the above using squared identities:

2cos²(x)cos²(x) = {cos(2x) +1}cos²x

                         = {cos(2x) +1} {{cos(2x) +1}/2}

                         [tex]= \frac{\{cos(2x) +1\}^2}{2}\\\\=\frac{cos^2(2x)+2cos(2x)+1}{2}\\\\=\frac{\frac{cos(4x)+1}{2}+2cos(2x)+1}{2}\\\\=\frac{3+4cos(2x)+cos(4x)}{4}[/tex]

so,

2cos²(x)cos²(x) = {3 + 4cos(2x) + cos(4x)} / 4

Hence option D is correct.

Learn more about squared identities:

https://brainly.com/question/14613683?referrer=searchResults