Respuesta :
Answer:
257 kN.
Explanation:
So, we are given the following data or parameters or information in the following questions;
=> "A jet transport with a landing speed
= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"
= > The distance = 425 m along the runway with constant deceleration."
=> "The total mass of the aircraft is 140 Mg with mass center at G. "
We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"
Step one: determine the acceleration;
=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.
=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.
Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).
= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).
= 257 kN.
The reaction N under the nose wheel B towards the end of the braking interval = 257 kN
Given data :
Landing speed of Jet = 200 km/h
Distance = 425 m
Total mass of aircraft = 140 Mg with mass center at G
Determine the reaction N under the nose of wheel B
- First step : calculate the value of the Jet acceleration
Jet acceleration = 1 / (2 *425) * (200² - 60² ) * 1 / (3.6)²
= 3.3 m/s²
- Next step : determine the reaction N under the nose of Wheel
Reaction N = Total mass of aircraft * jet acceleration* 1.2 = 15N - (9.8*2.4* 140). ----- ( 1 )
∴ Reaction N = 140 * 3.3 * 1.2 = 15 N - ( 9.8*2.4* 140 )
Hence Reaction N = 257 KN
We can conclude that the The reaction N under the nose wheel B towards the end of the braking interval = 257 kN
Learn more about : https://brainly.com/question/15776281