Answer:
E. 8.08 x 10⁴.
Explanation:
Hello,
In this case, for the reaction:
[tex]CH_2O(g) + 2H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)[/tex]
We can compute the Gibbs free energy of reaction via:
[tex]\Delta G\°=\Delta H\°-T\Delta S\°[/tex]
Since both the entropy and enthalpy of reaction are given at 298 K (standard temperature), therefore:
[tex]\Delta G\°=-94.9kJ-(298K)(-224.2\frac{J}{K}*\frac{1kJ}{1000kJ} )\\\\\Delta G\°=-28.1kJ[/tex]
Then, as the equilibrium constant is computed as:
[tex]K=exp(-\frac{\Delta G\°}{RT} )[/tex]
We obtain:
[tex]K=exp(-\frac{-28.1kJ/mol}{8.314x10^{-3}\frac{kJ}{mol* K}}*298K )\\\\K=8.08 x10^4[/tex]
For which the answer is E. 8.08 x 10⁴.
Best regards,