Respuesta :
Answer:
The induced current is [tex]I = 5.72*10^{-4 } \ A[/tex]
Explanation:
From the question we are told that
The cross-sectional area is [tex]A = 8.60 \ cm^2 = \frac{8.60 }{10000} = 8.60 *10^{-4} \ m[/tex]
The initial value of magnetic field is [tex]B_1 = 0.500 \ T[/tex]
The value of magnetic field at time t is [tex]B_f = 2.40 \ T[/tex]
The number of turns is N = 1
The time taken is [tex]dt[/tex]= 1.02 \ s
The resistance of the loop is [tex]R = 2.80\ \Omega[/tex]
Generally the induced emf is mathematically represented as
[tex]e = - \frac{d \phi}{dt }[/tex]
Where [tex]d \phi[/tex] is the change n the magnetic flux which is mathematically represented as
[tex]d \phi = N *A * d B[/tex]
Where [tex]dB[/tex] is the change in magnetic field which is mathematically represented as
[tex]d B = B_f - B_i[/tex]
substituting values
[tex]d B = 2.40 - 0.500[/tex]
[tex]d B = 1.9 \ T[/tex]
So
[tex]d \phi = 1 * 1.9 * 8.60 *10^{-4}[/tex]
[tex]d \phi = 1.63*10^{-3} \ T[/tex]
So
[tex]e = - \frac{1.63 *10^{-3}}{ 1.02 }[/tex]
[tex]e = - 1.60*10^{-3} \ V[/tex]
Here the negative only indicates that the emf is acting in opposite direction of the motion producing it so the magnitude of the emf is
[tex]e = 1.60*10^{-3} \ V[/tex]
Now the induced current is evaluated as follows
[tex]I = \frac{e}{R }[/tex]
substituting values
[tex]I = \frac{1.60 *10^{-3}}{2.80 }[/tex]
[tex]I = 5.72*10^{-4 } \ A[/tex]