Please Help!!!

Family Size. You selected a random sample of n = 31 families in your neighborhood and found the mean family size for the sample equal to 3.1, the standard deviation for the sample is 1.42? What is the 90% confidence interval for the estimate?

Respuesta :

Answer : (2.67, 3.53)

Step to step explanation:

Confidence interval for mean, when population standard deviation is unknown:

[tex]\overline{x}\pm t_{\alpha/2}\dfrac{s}{\sqrt{n}}[/tex]

, where [tex]\overline{x}[/tex] = sample mean

n= sample size

s= sample standard deviation

[tex]t_{\alpha/2}[/tex] = Critical t-value for n-1 degrees of freedom

We assume the family size is normal distributed.

Given, n= 31 , [tex]\overline{x}=3.1[/tex], s= 1.42 ,

[tex]\alpha=1-0.9=0.10[/tex]

Critical t value for [tex]\alpha/2=0.05[/tex] and degree of 30 freedom

[tex]t_{\alpha/2}[/tex] = 1.697  [By t-table]

The required confidence interval:

[tex]3.1\pm ( 1.697)\dfrac{1.42}{\sqrt{31}}\\\\=3.1\pm0.4328\\\\=(3.1-0.4328,\ 3.1+0.4328)=(2.6672,\ 3.5328)\approx(2.67,\ 3.53)[/tex]

Hence,  the 90% confidence interval for the estimate = (2.67, 3.53)