Respuesta :

Answer:

Proof of [tex]\dfrac{1}{z}}=\dfrac{1}{y}+\dfrac{2}{x}[/tex]  is shown below.

Explanation:

The given equation is

[tex]2^x=3^y=12^z[/tex]

To prove : [tex]\dfrac{1}{z}=\dfrac{1}{y}+\dfrac{2}{x}[/tex]

Proof : Let as assume,

[tex]2^x=3^y=12^z=k[/tex]

[tex]2^x=k\Rightarrow 2=k^{\frac{1}{x}}[/tex]    ...(1)

[tex]3^y=k\Rightarrow 3=k^{\frac{1}{y}}[/tex]      ...(2)

[tex]12^z=k\Rightarrow 12=k^{\frac{1}{z}}[/tex]    ...(3)

We know that

[tex]12=2\times 2\times 3[/tex]

[tex]12=(2)^2\times 3[/tex]

Using (1), (2) and (3), we get

[tex]k^{\frac{1}{z}}=(k^{\frac{1}{x}})^2\times k^{\frac{1}{y}}[/tex]

[tex]k^{\frac{1}{z}}=k^{\frac{2}{x}}\times k^{\frac{1}{y}}[/tex]

[tex]k^{\frac{1}{z}}=k^{\frac{2}{x}+\frac{1}{y}}[/tex]

On comparing both sides, we get

[tex]\dfrac{1}{z}}=\dfrac{2}{x}+\dfrac{1}{y}[/tex]

[tex]\dfrac{1}{z}}=\dfrac{1}{y}+\dfrac{2}{x}[/tex]

Hence proved.