Answer:
Given,
Volume of a cone = 1540 cm[tex] {}^{3} [/tex]
Radius ( r ) = 7 cm
π ( pi ) = [tex] \frac{22}{7} [/tex]
Height of cone ( h ) = ?
Now, let's find the height of cone:
Volume of cone = [tex]\pi \: {r}^{2} \frac{h}{3} [/tex]
plug the values
[tex]1540 = \frac{22}{7} \times {(7)}^{2} \times \frac{h}{3} [/tex]
Evaluate
[tex]1540 = \frac{22}{7} \times 49 \times \frac{h}{3} [/tex]
Calculate
[tex]1540 = \frac{154 \: h}{3} [/tex]
Apply cross product property
[tex]154 \: h = 1540 \times 3[/tex]
Calculate the product
[tex]154 \: h = 4620[/tex]
Divide both sides of the equation by 154
[tex] \frac{154 \: h}{154} = \frac{4620}{154} [/tex]
Calculate
[tex]h \: = 30 \: cm[/tex]
Hope this helps...
Best regards!!