Respuesta :

Answer:

f(x) =  3x⁴ - [tex]\frac{2X^{3} }{3}[/tex] - 17x +  [tex]\frac{68}{3}[/tex]

Step-by-step explanation:

To find f'(x), we will follow the steps below:

We will start by integrating both-side of the equation

∫f'(x) = ∫(12x^3 - 2x^2 - 17)dx

f(x)  = 3x⁴ - [tex]\frac{2X^{3} }{3}[/tex] - 17x + C

Then we go ahead and find C

f(1) = 8

so we will replace x by 1 in the above equation and solve for c

f(1)  = 3(1)⁴ - [tex]\frac{2(1)^{3} }{3}[/tex] - 17(1) + C

8 = 3 - [tex]\frac{2}{3}[/tex] - 17 + C

C =8 - 3 + 17 + [tex]\frac{2}{3}[/tex]

C = 22 +  [tex]\frac{2}{3}[/tex]

C =[tex]\frac{66 + 2}{3}[/tex]

C = [tex]\frac{68}{3}[/tex]

f(x) =  3x⁴ - [tex]\frac{2X^{3} }{3}[/tex] - 17x +  [tex]\frac{68}{3}[/tex]