Respuesta :

Answer:

[tex]f(-1) = 8[/tex]

[tex]f^{-1}(x) = \frac{5}{3} - \frac{x}{3}[/tex]

Step-by-step explanation:

Given

[tex]f(x) = 5 - 3x[/tex]

Required

[tex]f(-1)[/tex] and [tex]f^{-1}(x)[/tex]

Solving for f(-1)

Substitute -1 for x in [tex]f(x) = 5 - 3x[/tex]

[tex]f(-1) = 5 - 3(-1)[/tex]

[tex]f(-1) = 5 + 3[/tex]

[tex]f(-1) = 8[/tex]

Solving for [tex]f^{-1}(x)[/tex]

Let y = f(x)

[tex]y = 5 - 3x[/tex]

Interchange the position of x and y

[tex]x = 5 - 3y[/tex]

Make y the subject of formula (add 3y to both sides)

[tex]3y + x = 5 - 3y + 3y[/tex]

[tex]3y + x = 5[/tex]

Subtract x from both sides

[tex]3y + x - x = 5 - x[/tex]

[tex]3y = 5 - x[/tex]

Divide through by 3

[tex]\frac{3y}{3} = \frac{5}{3} - \frac{x}{3}[/tex]

[tex]y = \frac{5}{3} - \frac{x}{3}[/tex]

Replace y with [tex]f^{-1}(x)[/tex]

[tex]f^{-1}(x) = \frac{5}{3} - \frac{x}{3}[/tex]