Respuesta :

Answer:

[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{540 \: m}}}}}[/tex]

Step-by-step explanation:

Let the length and breadth be 5x and 4x respectively.

Area of rectangular field = 18000 m²

Finding the value of x

Area of rectangle = [tex] \sf{l \times b}[/tex]

Plug the values

⇒[tex] \sf{18000 = 5x \times 4x}[/tex]

Calculate the product

⇒[tex] \sf{18000 = 20 {x}^{2} }[/tex]

Swap the sides of the equation

⇒[tex] \sf{20 {x}^{2} = 18000}[/tex]

Divide both sides of the equation by 20

⇒[tex] \sf{ \frac{20 {x}^{2} }{20} = \frac{18000}{20} }[/tex]

Calculate

⇒[tex] \sf{ {x}^{2} = 900}[/tex]

Squaring on both sides

⇒[tex] \sf{x = 30}[/tex]

Replacing the value of x in order to find the value of length and breadth

Length = [tex] \sf{5x = 5 \times 30 = 150 \: m}[/tex]

Breadth = [tex] \sf{4x = 4 \times 30 = 120 \: m}[/tex]

Finding the perimeter of the rectangular field

Perimeter of rectangle = [tex] \sf{2(l + b)}[/tex]

plug the values

⇒[tex] \sf{2(150 + 120)}[/tex]

Distribute 2 through the parentheses

⇒[tex] \sf{300 + 240}[/tex]

Add the numbers

⇒[tex] \sf{540 \: m}[/tex]

Hope I helped !

Best regards!!