A cellist tunes the C string of her instrument to a fundamental frequency of 65.4 Hz. The vibrating portion of the string is 0.590 m long and has a mass of 15.0 g.
(a) Calculate the wavelength corresponding to this fundamental frequency?
(b) Calculate the wave speed.
(c) With what tension must the musician stretch the string?

Respuesta :

Answer:

a

[tex]\lambda = 1.18 \ m[/tex]

b

[tex]v = 77.172 \ m/s[/tex]

c

[tex]T = 151.41 \ N[/tex]

Explanation:

From the question we are told that

   The frequency is  [tex]f = 65.4 \ Hz[/tex]

   The  length of the vibrating string is  [tex]L = 0.590 \ m[/tex]

   The  mass is  [tex]m = 15.0 \ g = 0.015 \ kg[/tex]

Generally the wavelength is mathematically represented as

           [tex]\lambda = 2 * L[/tex]

=>        [tex]\lambda = 2 * 0.590[/tex]

=>         [tex]\lambda = 1.18 \ m[/tex]

Generally the wave speed is  

          [tex]v = \lambda * f[/tex]

=>       [tex]v = 1.18 * 65.4[/tex]

=>       [tex]v = 77.172 \ m/s[/tex]

Generally the tension on the wire is mathematically represented as

        [tex]T = v^2 * \frac{ m }{L }[/tex]

=>      [tex]T = 77.172 ^2 * \frac{ 0.015 }{0.590}[/tex]

=>      [tex]T = 151.41 \ N[/tex]