Respuesta :
Answer:
[tex] \boxed{ \bold{ { \boxed{ \sf{ - {w}^{3} + 4 {w}^{2} - 8w + 7}}}}}[/tex]
Step-by-step explanation:
[tex] \sf{( - {w}^{3} + 8 {w}^{2} - 3w) - (4 {w}^{2} + 5w - 7)}[/tex]
Remove the unnecessary Parentheses
⇒[tex] \sf{ - {w}^{3} + 8 {w}^{2} - 3w - (4 {w}^{2} + 5w - 7)}[/tex]
When there is a ( - ) in front of a parentheses, change the signs of each term in the expression
⇒[tex] \sf{ - {w}^{3} + 8 {w}^{2} - 3w - 4 {w}^{2} - 5w + 7}[/tex]
Collect like terms
⇒[tex] \sf{ - {w}^{3} + 8 {w}^{2} - 4 {w}^{2} - 3w - 5w + 7}[/tex]
⇒[tex] \sf{ - {w}^{3 } + 4 {w}^{2} - 8w + 7 }[/tex]
Hope I helped!
Best regards!!
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Hi my lil bunny!
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
[tex]\boxed{-w^3 + 4w^2 + -8w + 7}[/tex]
Let's simplify step-by-step.
[tex](-w^3+8w^2-3w)-(4w^2+5w-7)[/tex]
Distribute the Negative Sign:
[tex]= -w^3 + 8w^2 - 3w + -1( 4w^2 + 5w - 7 ) \\= - w^3 + 8w^2 + 3w + -1(4w^2) + -1 (5w)+(-1 )(-7)\\= -w^3 + 8w^2 + -3w + -4w^2 + 5w + 7[/tex]
Combine Like Terms:
[tex]= -w^3 + 8w^2 + -3w + -4w^2 + -5w + 7 \\= (-w^3) + ( 8w^3 + -3w + -4w^2) + ( -3w + -5w) + 7 \\= -w^3 + 4w^2 + -8w + 7[/tex]
❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙
●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●
Have a great day/night!
❀*May*❀