contestada

Consider the function below. g(x) = 4x − 1 Find the difference quotient below (where h ≠ 0) and simplify your answer. g(x + h) − g(x) -------------------- h

Respuesta :

Answer:

The difference quotient is 4.

Step-by-step explanation:

Given that:

[tex]g(x) = 4x - 1[/tex]

To find:

Difference quotient = ?

where [tex]h \neq 0[/tex]

Solution:

Formula for Difference quotient is given as:

[tex]\dfrac{g(x+h)-g(x)}{h}[/tex]

First of all, let us find out [tex]g(x+h)[/tex]

Replacing [tex]x[/tex] with [tex]x+h[/tex]

[tex]g(x+h) = 4(x+h)-1 \\\Rightarrow g(x+h) = 4x+4h-1[/tex]

Now,

[tex]g(x+h)-g(x) = (4x+4h-1 )-(4x-1)\\\Rightarrow g(x+h)-g(x) = 4x+4h-1 -4x+1\\\Rightarrow g(x+h)-g(x) = 4h[/tex]

Putting the above value in:

[tex]\dfrac{g(x+h)-g(x)}{h} = \dfrac{4h}{h}[/tex]

We are given that, [tex]h \neq 0[/tex]

[tex]\therefore \dfrac{4h}{h} = 4[/tex]

So, the difference quotient is 4.