Answer:
B(-5,5).
Step-by-step explanation:
It is given that midpoint of AB is M (-6,1).
Coordinates of A are (-7,-3 ).
We need to find the coordinates of point B.
Let coordinates of point B are (a,b).
[tex]Midpoint=\left(\dfrac{x_1+x_2}{2},\dfrac{y_1+y_2}{2}\right)[/tex]
Midpoint of AB is
[tex]Midpoint=\left(\dfrac{-7+a}{2},\dfrac{-3+b}{2}\right)[/tex]
[tex](-6,1)=\left(\dfrac{-7+a}{2},\dfrac{-3+b}{2}\right)[/tex]
On comparing both sides, we get
[tex]\dfrac{-7+a}{2}=-6[/tex]
[tex]-7+a=-12[/tex]
[tex]a=-12+7[/tex]
[tex]a=-5[/tex]
[tex]\dfrac{-3+b}{2}=1[/tex]
[tex]-3+b=2[/tex]
[tex]b=2+3[/tex]
[tex]b=5[/tex]
Therefore, the coordinates of B are (-5,5).