Respuesta :
Answer:
A
Step-by-step explanation:
We are given the two functions:
[tex]\displaystyle h(x)=5+x \text{ and } k(x) = \frac{1}{x}[/tex]
And we want to find:
[tex](k\cdot h)(x)[/tex]
Recall that this is equivalent to:
[tex]\displaystye (k\cdot h)(x) = k(x) \cdot h(x)[/tex]
Substitute and simplify:
[tex]\displaystyle \begin{aligned} (k\cdot h)(x) & = \left(\frac{1}{x}\right)(5+x) \\ \\ & = \frac{5+x}{x} \end{aligned}[/tex]
In conclusion, our answer is A.
Answer:
A. (5 + x) / x
Step-by-step explanation:
h(x) = 5 + x
k(h) = 1 / x
express the above to (k*h)(x)
(k*h)(x) = (1 / x) * (5 + x)
= 1/x (5+x)
= 1 * (5 + x)
x
= 1 (5 + x) = 5 + x
= 5 + x
x