Respuesta :

Answer:

A

Step-by-step explanation:

We are given the two functions:

[tex]\displaystyle h(x)=5+x \text{ and } k(x) = \frac{1}{x}[/tex]

And we want to find:

[tex](k\cdot h)(x)[/tex]

Recall that this is equivalent to:

[tex]\displaystye (k\cdot h)(x) = k(x) \cdot h(x)[/tex]

Substitute and simplify:

[tex]\displaystyle \begin{aligned} (k\cdot h)(x) & = \left(\frac{1}{x}\right)(5+x) \\ \\ & = \frac{5+x}{x} \end{aligned}[/tex]

In conclusion, our answer is A.

Answer:

A.  (5 + x) / x

Step-by-step explanation:

h(x) = 5 + x

k(h) = 1 / x

express the above to (k*h)(x)

(k*h)(x) = (1 / x) * (5 + x)

= 1/x (5+x)

= 1 * (5 + x)

         x

= 1 (5 + x) = 5 + x

= 5 + x

      x