Respuesta :
Answer:
The graphs and the table is missing in the question.
Step-by-step explanation:
The guidelines for interpreting correlation co-efficient r are :
1. Strong correlation 0.7<|r|≤1
2. Moderate correlation 0.4<|r|<0.7
3. Weak correlation 0.2<|r|<0.4
4. No correlation 0≤|r|<0.2
Logarithmic regression
(i). Mean : [tex]$ {\overset{-}{ln}x} = \frac{\sum ln x_i}{n}, \ \ \ {\overset{-}y} = \frac{\sum y_i}{n} $[/tex]
(ii) Trend line : [tex]$ y = A +B \ln x, \ \ B = \frac{S_{xy}}{S_{xx}}, \ \ A={\overset{-}y-B{\overset{-}{\ln x}}}$[/tex]
(iii). Correlation coefficient : [tex]$ r = \frac {S_{xy}}{\sqrt{S_{xx}} \sqrt{S_{yy}}} $[/tex]
[tex]$ S_{xx} = \sum (\ln x_i - {\overset{-}{\ln x}})^2 = \sum (\ln x_i)^2-n. ({\overset{-}{\ln x}})^2$[/tex]
[tex]$ S_{yy} = \sum(y_i - {\overset{-}y})^2 = \sumy_i^2 - n. {\overset{-}y^2}$[/tex]
[tex]$ S_{xy} = \sum(\ln x_i - {\overset{-}{\ln x}})(y_i-{\overset{-}y}) = \sum \ln x_i y_i - n. {\overset{-}{\ln x}}{\overset{-}y} $[/tex]
Now using the technology we can calculate
The equation of the regression curve is y = A + B(lnx)
we get A = 30.72 , B = 17.19
The equation of regression curve is [tex]$ \hat y$[/tex] = 30.72 + 17.19(lnx)