Answer:
Building to the left is taller.
Step-by-step explanation:
Kindly refer to the attached diagram for the given dimensions.
[tex]\triangle ABR, \triangle PQR[/tex]
AB and PQ be the two buildings.
The car be parked at point R.
[tex]\angle ARB = 50^\circ\ and \\\angle PRQ = 40^\circ[/tex]
Distance of R from building bases:
BR = 49 m
QR = 56 m
Let us use tangent in [tex]\triangle PQR:[/tex]
[tex]tan\theta = \dfrac{Perpendicular}{Base}[/tex]
[tex]tan40 = \dfrac{h_1}{56}\\\Rightarrow h_1 = 56 \times 0.839 \\\Rightarrow h_1 \approx 47\ m[/tex]
Let us use tangent in [tex]\triangle PQR:[/tex]
[tex]tan\theta = \dfrac{Perpendicular}{Base}[/tex]
[tex]tan50 = \dfrac{h_2}{49}\\\Rightarrow h_2 = 49 \times 1.19 \\\Rightarrow h_2 \approx 58.4\ m[/tex]
So, building to the left is taller.