Answer:
y = - [tex]\frac{1}{3}[/tex] x + [tex]\frac{7}{3}[/tex]
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = [tex]\frac{y_{2}-y_{1} }{x_{2}-x_{1} }[/tex]
with (x₁, y₁ ) = ((- 2, 3) and (x₂, y₂ ) = (4, 1)
m = [tex]\frac{1-3}{4+2}[/tex] = [tex]\frac{-2}{6}[/tex] = - [tex]\frac{1}{3}[/tex] , thus
y = - [tex]\frac{1}{3}[/tex] x + c ← is the partial equation
To find c substitute either of the 2 points into the partial equation
Using (- 2, 3), then
3 = [tex]\frac{2}{3}[/tex] + c ⇒ c = 3 - [tex]\frac{2}{3}[/tex] = [tex]\frac{7}{3}[/tex]
y = - [tex]\frac{1}{3}[/tex] x + [tex]\frac{7}{3}[/tex] ← equation of line