How to prove it equal 8?

Answer:
The answer equals -8
Step-by-step explanation:
Order of Operations: BPEMDAS
FOIL - First, Outside, Inside, Last
Step 1: Write out expression
[tex](\sqrt{4-3i} -\sqrt{4+3i})^6[/tex]
Step 2: Expand
[tex](\sqrt{4-3i} -\sqrt{4+3i})(\sqrt{4-3i} -\sqrt{4+3i})(\sqrt{4-3i} -\sqrt{4+3i})(\sqrt{4-3i} -\sqrt{4+3i})(\sqrt{4-3i} -\sqrt{4+3i})(\sqrt{4-3i} -\sqrt{4+3i})[/tex]
Step 3: FOIL first 2
[tex](\sqrt{4-3i} -\sqrt{4+3i})^2 = -2[/tex]
Step 4: Replace square roots with -2
-2(-2)(-2) = (-2)³ = 8