Respuesta :

Answer:

[tex]\Large \boxed{h(g(f(x)))=-8x^2-40x-50}[/tex]

Step-by-step explanation:

[tex]f(x)=2x+5 \\\\ g(x)=x^2 \\\\h(x)=-2x[/tex]

[tex]h(g(f(x)))=-2((2x+5)^2)[/tex]

Expanding and solving for brackets.

[tex]h(g(f(x)))=-2(4x^2+20x+25)[/tex]

Distributing -2 to the terms in the brackets.

[tex]h(g(f(x)))=-8x^2-40x-50[/tex]

Answer:

-8x^2 - 40x - 50

Step-by-step explanation:

f(x) = 2x + 5

g(x) = x^2

h(x) = -2x

h(g(f(x))) =

First find g(f(x))

g(f(x)) = (2x+5) ^2 = 4x^2 + 10x + 10x +25

                            = 4x^2 + 20x + 25

The stick this in for g(f(x)

h(g(f(x))) = -2 (4x^2 + 20x + 25)

             = -8x^2 - 40x - 50