Respuesta :
Answer:
[tex]x=2y+6[/tex]
Step-by-step explanation:
So we have the system:
[tex]-x+2y=-6\\3x+y=8[/tex]
If we isolate the x-variable in the first equation:
[tex]-x+2y=-6[/tex]
Subtract 2y from both sides:
[tex]-x=-6-2y[/tex]
Divide both sides by -1:
[tex]x=2y+6[/tex]
Therefore, we would substitute the above into the second equation:
[tex]3x+y=8\\3(2y+6)+y=8[/tex]
The answer is 2y+6
Further notes:
To solve for the system, distribute:
[tex]6y+18+y=8[/tex]
Simplify:
[tex]7y+18=8[/tex]
Subtract:
[tex]7y=-10[/tex]
Divide:
[tex]y=-10/7\approx-1.4286[/tex]
Now, substitute this value back into the isolated equation:
[tex]x=2(-10/7)+6\\x=-20/7+42/7\\x=22/7\approx3.1429[/tex]
Step-by-step explanation:
Start by solving the equation for x (☓)
[tex] - x + 2y = 6 \\ \: \: \: \: \: 3 + y = 8[/tex]
[tex]x = 6 + 2y[/tex]
Substitute the given value of x for the equation 3 + y = 8
[tex]3(6 + 2y) + y = 8[/tex]
solve the equation for y
[tex]y = - \frac{10}{7} [/tex]
substitute the given value of y into the equation x = 6 + 2
[tex]x = 6 + 2 \times ( - \frac{10}{7} )[/tex]
solve the equation for x
[tex]x = \frac{22}{7} [/tex]
The possible solution of the system is the ordered pair (x,y)
[tex] (\frac{22}{7} . - \frac{10}{7} )[/tex]
The dot (.) in the center is supposed to be a comma but the scientific keyboard does not support a comma
[tex](x.y) \: \: ( \frac{22}{7} . - \frac{10}{7} )[/tex]