Answer:
[tex]\setlength{\unitlength}{2.5mm}\begin{picture}(10,10)\multiput(0,0)(2,0){21}{\line(0,1){40}}\multiput(0,0)(0,2){21}{\line(1,0){40}}\linethickness{0.45mm}\put(20,20){\vector(2,0){18}}\put(20,20){\vector(-2,0){18}}\put(20,20){\vector(0,2){18}}\put(20,20){\vector(0,-2){18}}\multiput(19.35,6)(0,2){15}{\line(1,0){1.3}}\multiput(6,19.35)(2,0){15}{\line(0,1){1.3}}\put(20,20){\circle*{1}}\put(22,22){\sf O(0, 0)}\put(20,28){\circle*{1.1}}\put(20,28){\circle{2}}\put(21,28){\sf A(0, 4)}\put(20,38){\sf Y}\put(21,2){\sf Y'}\put(2,21){\sf X'}\put(37,21){\sf X}\end{picture}[/tex]
[tex] \sf\pink{Answer\::}[/tex]
The point (0,4) is located on the y axis in between 1st quadrant on cartisian plane.
[tex]\rule{130}1[/tex]
[tex] \huge \sf\gray{Extra\:Shots\::}[/tex]
The cartisian plane is defined by two perpendicular number lines, x axis (horizontal line), and y axis (vertical line).
[tex]\rule{170}2[/tex]