Rewrite the expression in the form o
[tex] {a}^{n} [/tex]

Answer:
a^ (5/2)
Step-by-step explanation:
a^5 ÷ a ^ (5/2)
We know that x^b ÷ x^c = x^ ( b-c)
a^ ( 5 - 5/2)
a^ ( 10/2 - 5/2)
a^ (5/2)
Answer:
[tex]a^{\frac{5}{2} }[/tex]
Step-by-step explanation:
Using exponent rules, if we have [tex]a^x \div a^y[/tex] then the result can simplify to [tex]a^{x-y}[/tex]
So [tex]a^5 \div a^{\frac{5}{2}}[/tex] is the same as [tex]a^{5 - \frac{5}{2}}[/tex].
[tex]\frac{5}{1} - \frac{5}{2} = \frac{10}{2} - \frac {5}{2} = \frac {5}{2}[/tex]
So [tex]a^{\frac{5}{2}}[/tex].
Hope this helped!