Answer:
a. [tex]T = 17s[/tex]
b. [tex]D = 72cm[/tex]
Step-by-step explanation:
Given
Direct Variation
[tex]Distance(D)\ \alpha\ Time (T)[/tex]
D = 264 cm when T = 11 s
Calculating (a)
First, the constant of variation (k) as to be calculated;
Since, there exist a direct proportion; then,
[tex]D\ \alpha\ T[/tex]
[tex]D = kT[/tex]
Make k the subject of formula
[tex]k = \frac{D}{T}[/tex]
D = 264 cm when T = 11 s; So
[tex]k = \frac{264}{11}[/tex]
[tex]k = 24[/tex]
So: Solving for (a)
[tex]D = 408[/tex]
Substitute 408 for D and 24 for k in [tex]D = kT[/tex]
[tex]408 = 24 * T[/tex]
Divide both sides by 24
[tex]\frac{408}{24} = T[/tex]
[tex]T = \frac{408}{24}[/tex]
[tex]T = 17s[/tex]
Hence, time to move a distance of 408cm is 17s
Calculating (b)
[tex]T = 3[/tex]
Substitute 3 for T and 24 for k in [tex]D = kT[/tex]
[tex]D = 24 * 3[/tex]
[tex]D = 72cm[/tex]
Hence, distance covered in 3 seconds is 72cm