Respuesta :
Answer:
47.68 x 10²³ or 4.768 x 10²⁴ copper atoms
Explanation:
Given:
Radius of the copper sphere (r) = 0.935 in
First convert the radius from inches to centimeters
1 in = 2.54cm
0.935in = 0.935 x 2.54cm = 2.3749cm
∴ r = 2.3749cm
Calculate the volume of the copper sphere as follows
Volume = [tex]\frac{4}{3}\pi r^{3}[/tex] [substitute r = 2.3749cm and π = 22 / 7]
Volume = [tex]\frac{4}{3}(\frac{22}{7} ) (2.3749)^{3}[/tex]
Volume = 56.108cm³
From the volume and given density, calculate the mass of the copper sphere
mass = density x volume [density = 8.96g/cm³]
mass = 8.96 x 56.108 = 502.73g
From known facts
1 mole of copper = 63.5g of copper = 6.022 x 10²³ copper atoms.
Then,
502.73 g of copper = [tex]\frac{502.73 * 6.022*10^{23}}{63.5}[/tex] = 47.68 x 10²³ copper atoms
Therefore, the sphere contains 47.68 x 10²³ copper atoms
Answer:
=4.8*10^-24atoms
Explanation:
To find volume of a sphere
= 5.61*10^-5m³ x 8.96gx 100³m³
=502.7g
So we use density of copper to convert volume to mass so
1atm of cux( 1mol of cu/6.02Eatm of cu)*(63.54g of cu/1 mole of cu)
So = 1.055*10-22g cu
So
= 502.7/1.055*10-22g cu
=4.8*10^-24atoms