Respuesta :
Rationalizing the denominator involves exploiting the well-known difference of squares formula,
[tex]a^2-b^2=(a-b)(a+b)[/tex]
We have
[tex](\sqrt{16}-\sqrt2)(\sqrt{16}+\sqrt2)=(\sqrt{16})^2-(\sqrt2)^2=16-2=14[/tex]
so that
[tex]\dfrac{\sqrt{32}}{\sqrt{16}-\sqrt2}=\dfrac{\sqrt{32}(\sqrt{16}+\sqrt2)}{14}[/tex]
Rewrite 16 and 32 as powers of 2, then simplify:
[tex]\dfrac{\sqrt{32}}{\sqrt{16}-\sqrt2}=\dfrac{\sqrt{2^5}(\sqrt{2^4}+\sqrt2)}{14}[/tex]
[tex]\dfrac{\sqrt{32}}{\sqrt{16}-\sqrt2}=\dfrac{2^2\sqrt2(2^2+\sqrt2)}{14}[/tex]
[tex]\dfrac{\sqrt{32}}{\sqrt{16}-\sqrt2}=\dfrac{4\sqrt2(4+\sqrt2)}{14}[/tex]
[tex]\dfrac{\sqrt{32}}{\sqrt{16}-\sqrt2}=\dfrac{16\sqrt2+4(\sqrt2)^2}{14}[/tex]
[tex]\dfrac{\sqrt{32}}{\sqrt{16}-\sqrt2}=\dfrac{16\sqrt2+8}{14}[/tex]
[tex]\dfrac{\sqrt{32}}{\sqrt{16}-\sqrt2}=\dfrac{8\sqrt2+4}7[/tex]
So we have A = 8, B = 2, C = 4, and D = 7, and thus A + B + C + D = 21.
The rationalized form of the given surd is [tex]\frac{8\sqrt{2}+4}{7}[/tex], and the minimum possible value of A + B + C + D = 8 + 2 + 4 + 7 = 21
Rationalizing Surds
From the question, we are to rationalize the denominator of the given surd.
We are to write the answer in the form
[tex]\frac{A\sqrt{B}+C}{D}[/tex]
and find the minimum possible value of A + B + C + D
The given surd is
[tex]\frac{\sqrt{32}}{\sqrt{16}-\sqrt{2}}[/tex]
To rationalize the surd, we will multiply the numerator and denominator by the conjugate of the denominator
The conjugate of the denominator is [tex]\sqrt{16}+\sqrt{2}[/tex]
Therefore,
[tex]\frac{\sqrt{32}}{\sqrt{16}-\sqrt{2}} \times \frac{\sqrt{16}+\sqrt{2}}{\sqrt{16}+\sqrt{2}}[/tex]
[tex]= \frac{\sqrt{32}(\sqrt{16}+\sqrt{2})}{(\sqrt{16}-\sqrt{2})(\sqrt{16}+\sqrt{2})}[/tex]
[tex]= \frac{\sqrt{512}+\sqrt{64})}{(\sqrt{16})^{2} -(\sqrt{2})^{2} }[/tex]
[tex]= \frac{16\sqrt{2}+8}{16-2}[/tex]
[tex]= \frac{16\sqrt{2}+8}{14}[/tex]
[tex]= \frac{2(8\sqrt{2}+4)}{2(7)}[/tex]
By comparing with, [tex]\frac{A\sqrt{B}+C}{D}[/tex]
A = 8, B = 2, C = 4, and D = 7
Then, the minimum possible value of A + B + C + D = 8 + 2 + 4 + 7 = 21
Hence, the rationalized form of the given surd is [tex]\frac{8\sqrt{2}+4}{7}[/tex], and the minimum possible value of A + B + C + D = 8 + 2 + 4 + 7 = 21
Learn more on Rationalizing surds here: https://brainly.com/question/9547165