Find the limits of integration ly, uy, lx, ux, lz, uz (some of which will involve variables x,y,z) so that ∫uyly∫uzlz∫uxlxdxdzdy represents the volume of the region in the first octant that is inside the paraboloid y=x2+9z2 and between the planes y=5 and y=10.

Respuesta :

Answer:

Hello your question is incomplete attached below is the complete question

Ix = 0   Ux = [tex]\sqrt{y-9z^2}[/tex]

Iz = 0   Uz = [tex]\frac{\sqrt{y} }{3}[/tex]

Iy = 5   Uy = 10

Step-by-step explanation:

Ix = 0   Ux = [tex]\sqrt{y-9z^2}[/tex]

Iz = 0   Uz = [tex]\frac{\sqrt{y} }{3}[/tex]

Iy = 5   Uy = 10

attached below is the detailed solution

Ver imagen batolisis
Ver imagen batolisis